Vol. 4 No. 7 (2025)
Open Access
Peer Reviewed

PENGGUNAAN DEEP LEARNING UNTUK MEMPREDIKSI KINERJA AKADEMIK DAN MEMBERI DUKUNGAN YANG TEPAT BAGI SISWA

Authors

Ary Wira Andika , Lukman Nurhakim , Netty Huzniati Andas

DOI:

10.54443/sibatik.v4i7.3152

Published:

2025-06-26

Downloads

Abstract

This research delves into the profound application of deep learning to predict student academic performance and facilitate personalized interventions. By analyzing comprehensive data, including grades, attendance records, and student participation, various deep learning architectures—such as Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM)—are employed to uncover subtle patterns indicative of potential learning difficulties. The primary objective of this study is to empower educators and school administrators with predictive insights, enabling them to proactively identify student needs. Targeted interventions, such as personalized academic guidance, relevant emotional support, and appropriate enrichment opportunities, can then be effectively implemented. Nevertheless, this research places crucial emphasis on the careful interpretation of predictive outcomes and vigilance against potential biases within the data. Through the synergy between the analytical power of deep learning and the pedagogical sensitivity of educators, we hope to foster a more inclusive and supportive learning environment, ultimately facilitating the maximum potential development and academic success of every student.

Keywords:

Deep Learning Academic Performance Student requirements

References

Abidin, Z. (2020). EFEKTIVITAS PEMBELAJARAN BERBASIS MASALAH, PEMBELAJARAN BERBASIS PROYEK LITERASI, DAN PEMBELAJARAN INKUIRI DALAM MENINGKATKAN KEMAMPUAN KONEKSI MATEMATIS. Profesi Pendidikan Dasar, 1(1), 37–52. https://doi.org/10.23917/ppd.v1i1.10736

Adlina, M., & Gapur, A. (2024). Komparasi Gaya Belajar Emosional Bahasa Inggris SMA Edu Global Medan Dan Milner College Australia. Innovative: Journal Of Social Science Research, Query date: 2025-03-04 10:35:41. http://j-innovative.org/index.php/Innovative/article/view/17145

Adnyana, I. (2024). Implementasi Pendekatan Deep Learning dalam Pembelajaran Bahasa Indonesia. Retorika: Jurnal Pembelajaran Bahasa Dan …, Query date: 2025-03-04 10:35:41. http://e-journal.uniflor.ac.id/index.php/RJPBSI/article/view/5304

Aksoy, M. E., Torkul, O., & Cedimoglu, I. H. (2019). An approach for identifying students at risk of failing in a course using machine learning. Innovations in Education and Teaching International, 56(5), 576–588.

Al-Muslimawi, I., & Hamid, A. (2019). External and Internal Factors Affecting Student’s Academic Performance. The Social Sciences, 155–168. https://doi.org/10.36478/sscience.2019.155.168

Al-Tameemi, R., Johnson, C., Gitay, R., Abdel-Salam, A., Hazaa, K., Bensaid, A., & Romanowski, M. (2023). Determinants of poor academic performance among undergraduate students—A systematic literature review. International Journal of Educational Research Open. https://doi.org/10.1016/j.ijedro.2023.100232

Arif, M., Parawansyah, M., & ... (2025). STRATEGI MENUMBUHKAN MINAT BELAJAR SISWA MELALUI PENDEKATAN DEEP LEARNING. Jurnal Muassis …, Query date: 2025-03-04 10:35:41. https://muassis.journal.unusida.ac.id/index.php/jmpd/article/view/989

Arlita, S., Ahyani, N., & Missriani, M. (2020). Pengaruh Kompetensi Akademik dan Motivasi Guru Terhadap Kinerja Guru. Attractive: Innovative Education …, Query date: 2025-03-05 14:26:20. https://scholar.archive.org/work/ffpp2ptctbdlvewwgnqliozf2m/access/wayback/https://www.attractivejournal.com/index.php/aj/article/download/70/50

Aslam, A., Ninawati, M., & Noviani, A. (2021). Pengembangan media monopoli berbasis kontekstual pada materi jenis-jenis usaha dan kegiatan ekonomi mata pelajaran ips siswa kelas tinggi. Al-Aulad: Journal of Islamic …, Query date: 2025-02-25 19:58:46. https://journal.uinsgd.ac.id/index.php/al-aulad/article/view/10156

Ayubi, U., Syahmuntaqy, M., & Prayoga, A. (2020). Implementasi supervisi akademik kepala sekolah dalam meningkatkan kinerja pendidik. Manazhim, Query date: 2025-03-05 14:26:20. https://ejournal.stitpn.ac.id/index.php/manazhim/article/view/706

Azizah, S., Usman, A., Fauzi, M., & ... (2023). Analisis gaya belajar siswa dalam menerapkan pembelajaran berdeferensiasi. Jurnal Teknologi …, Query date: 2025-03-04 10:35:41. https://edu.pubmedia.id/index.php/jtp/article/view/74

Badriyah, B. (2022). Supervisi Akademik Kepala Sekolah dalam Meningkatkan Kinerja Guru. MUNAQASYAH: Jurnal Ilmu Pendidikan …, Query date: 2025-03-05 14:26:20. https://ejournal.stiblambangan.ac.id/index.php/munaqosyah/article/view/147

Bakyalakshmi, V. (2024). A Multi-View Deep Learning Approach for Enhanced Student Academic Performance Prediction. Communications on Applied Nonlinear Analysis. https://doi.org/10.52783/cana.v31.1223

Balcıoğlu, Y., & Artar, M. (2023). Predicting academic performance of students with machine learning. Information Development. https://doi.org/10.1177/02666669231213023

Baniata, L., Kang, S., Alsharaiah, M., & Baniata, M. (2024). Advanced Deep Learning Model for Predicting the Academic Performances of Students in Educational Institutions. Applied Sciences. https://doi.org/10.3390/app14051963

Chui, K., Liu, R., Zhao, M., & De Pablos, P. (2020). Predicting Students’ Performance With School and Family Tutoring Using Generative Adversarial Network-Based Deep Support Vector Machine. IEEE Access, 8, 86745–86752. https://doi.org/10.1109/ACCESS.2020.2992869

Hamu, F., Wea, D., & Setiyaningtiyas, N. (2023). Faktor-faktor yang memperngaruhi kinerja akademik mahasiswa: Analisis structural equation model. Jurnal Paedagogy, Query date: 2025-03-05 14:26:20. https://e-journal.undikma.ac.id/index.php/pedagogy/article/view/6473

Hussain, S., Gaftandzhieva, S., Maniruzzaman, M., Doneva, R., & Muhsen, Z. (2020). Regression analysis of student academic performance using deep learning. Education and Information Technologies, 26, 783–798. https://doi.org/10.1007/s10639-020-10241-0

Jihaoui, M., Abra, O., & Mansouri, K. (2025). Factors Affecting Student Academic Performance: A Combined Factor Analysis of Mixed Data and Multiple Linear Regression Analysis. IEEE Access, 13, 15946–15964. https://doi.org/10.1109/ACCESS.2025.3532099

Khan, K., Ramzan, M., Zia, Y., Zafar, Y., Khan, M., & Saeed, H. (2020). Factors Affecting Academic Performance of Medical Students. Life and Science. https://doi.org/10.37185/lns.1.1.45

Lee, J., & Shute, V. (2010). Personal and Social-Contextual Factors in K–12 Academic Performance: An Integrative Perspective on Student Learning. Educational Psychologist, 45, 185–202. https://doi.org/10.1080/00461520.2010.493471

Mehta, J., & Fine, S. (2019). In Search of Deeper Learning: The Quest to Remake the American High School. Harvard University Press.

Nabil, A., Seyam, M., & Abou-Elfetouh, A. (2021). Prediction of Students’ Academic Performance Based on Courses’ Grades Using Deep Neural Networks. IEEE Access, 9, 140731–140746. https://doi.org/10.1109/ACCESS.2021.3119596

Privado, J., Pérez-Eizaguirre, M., Martínez-Rodríguez, M., & Ponce-De-León, L. (2024). Cognitive and non-cognitive factors as predictors of academic performance. Learning and Individual Differences. https://doi.org/10.1016/j.lindif.2024.102536

Putra, L., & Rizqi, H. (2024). Pendampingan Pembuatan Modul Ajar Berbasis Deep Learning Untuk Meningkatkan Kompetensi Pedagogik Guru Sekolah Dasar. Ngudi Waluyo Empowerment: Jurnal …, Query date: 2025-03-04 10:35:41. https://e-abdimas.unw.ac.id/index.php/jfkp/article/view/517

Sarwat, S., Ullah, N., Sadiq, S., Saleem, R., Umer, M., Eshmawi, A., Mohamed, A., & Ashraf, I. (2022). Predicting Students’ Academic Performance with Conditional Generative Adversarial Network and Deep SVM. Sensors (Basel, Switzerland), 22. https://doi.org/10.3390/s22134834

Stasolla, F., Zullo, A., Maniglio, R., Passaro, A., Di Gioia, M., Curcio, E., & Martini, E. (2025). Deep Learning and Reinforcement Learning for Assessing and Enhancing Academic Performance in University Students: A Scoping Review. AI. https://doi.org/10.3390/ai6020040

Sugiyono. (2016). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Alfabeta.

Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, 104, 106189.

Wang, L., & Chen, C. (2024). Factors Affecting Student Academic Performance: A Systematic Review. International Journal on Studies in Education. https://doi.org/10.46328/ijonse.276

Yousafzai, B., Khan, S., Rahman, T., Khan, I., Ullah, I., Rehman, A., Baz, M., Hamam, H., & Cheikhrouhou, O. (2021). Student-Performulator: Student Academic Performance Using Hybrid Deep Neural Network. Sustainability. https://doi.org/10.3390/su13179775

Yudhistira, P. (2024). Pemanfaatan Big Data dalam Analisis Ekonomi di Sekolah. Jurnal Ilmiah Big Data, 5(1), 23–37. https://doi.org/10.12345/jibd.2024.02

Yunita, A., Santoso, H., & Hasibuan, Z. (2019). Deep Learning for Predicting Students’ Academic Performance. 2019 Fourth International Conference on Informatics and Computing (ICIC), 1–6. https://doi.org/10.1109/ICIC47613.2019.8985721

Author Biographies

Ary Wira Andika, Universitas Mahasaraswati Denpasar

Author Origin : Indonesia

Lukman Nurhakim, MTSS Baitul Quran Sambas

Author Origin : Indonesia

Netty Huzniati Andas, Universitas Sembilanbelas November Kolaka

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Wira Andika, A. ., Nurhakim, L. ., & Huzniati Andas, N. . (2025). PENGGUNAAN DEEP LEARNING UNTUK MEMPREDIKSI KINERJA AKADEMIK DAN MEMBERI DUKUNGAN YANG TEPAT BAGI SISWA. SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan, 4(7), 1647–1664. https://doi.org/10.54443/sibatik.v4i7.3152

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.