PENGGUNAAN DEEP LEARNING UNTUK MEMPREDIKSI KINERJA AKADEMIK DAN MEMBERI DUKUNGAN YANG TEPAT BAGI SISWA
Main Article Content
Ary Wira Andika
Lukman Nurhakim
Netty Huzniati Andas
This research delves into the profound application of deep learning to predict student academic performance and facilitate personalized interventions. By analyzing comprehensive data, including grades, attendance records, and student participation, various deep learning architectures—such as Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM)—are employed to uncover subtle patterns indicative of potential learning difficulties. The primary objective of this study is to empower educators and school administrators with predictive insights, enabling them to proactively identify student needs. Targeted interventions, such as personalized academic guidance, relevant emotional support, and appropriate enrichment opportunities, can then be effectively implemented. Nevertheless, this research places crucial emphasis on the careful interpretation of predictive outcomes and vigilance against potential biases within the data. Through the synergy between the analytical power of deep learning and the pedagogical sensitivity of educators, we hope to foster a more inclusive and supportive learning environment, ultimately facilitating the maximum potential development and academic success of every student.
Abidin, Z. (2020). EFEKTIVITAS PEMBELAJARAN BERBASIS MASALAH, PEMBELAJARAN BERBASIS PROYEK LITERASI, DAN PEMBELAJARAN INKUIRI DALAM MENINGKATKAN KEMAMPUAN KONEKSI MATEMATIS. Profesi Pendidikan Dasar, 1(1), 37–52. https://doi.org/10.23917/ppd.v1i1.10736
Adlina, M., & Gapur, A. (2024). Komparasi Gaya Belajar Emosional Bahasa Inggris SMA Edu Global Medan Dan Milner College Australia. Innovative: Journal Of Social Science Research, Query date: 2025-03-04 10:35:41. http://j-innovative.org/index.php/Innovative/article/view/17145
Adnyana, I. (2024). Implementasi Pendekatan Deep Learning dalam Pembelajaran Bahasa Indonesia. Retorika: Jurnal Pembelajaran Bahasa Dan …, Query date: 2025-03-04 10:35:41. http://e-journal.uniflor.ac.id/index.php/RJPBSI/article/view/5304
Aksoy, M. E., Torkul, O., & Cedimoglu, I. H. (2019). An approach for identifying students at risk of failing in a course using machine learning. Innovations in Education and Teaching International, 56(5), 576–588.
Al-Muslimawi, I., & Hamid, A. (2019). External and Internal Factors Affecting Student’s Academic Performance. The Social Sciences, 155–168. https://doi.org/10.36478/sscience.2019.155.168
Al-Tameemi, R., Johnson, C., Gitay, R., Abdel-Salam, A., Hazaa, K., Bensaid, A., & Romanowski, M. (2023). Determinants of poor academic performance among undergraduate students—A systematic literature review. International Journal of Educational Research Open. https://doi.org/10.1016/j.ijedro.2023.100232
Arif, M., Parawansyah, M., & ... (2025). STRATEGI MENUMBUHKAN MINAT BELAJAR SISWA MELALUI PENDEKATAN DEEP LEARNING. Jurnal Muassis …, Query date: 2025-03-04 10:35:41. https://muassis.journal.unusida.ac.id/index.php/jmpd/article/view/989
Arlita, S., Ahyani, N., & Missriani, M. (2020). Pengaruh Kompetensi Akademik dan Motivasi Guru Terhadap Kinerja Guru. Attractive: Innovative Education …, Query date: 2025-03-05 14:26:20. https://scholar.archive.org/work/ffpp2ptctbdlvewwgnqliozf2m/access/wayback/https://www.attractivejournal.com/index.php/aj/article/download/70/50
Aslam, A., Ninawati, M., & Noviani, A. (2021). Pengembangan media monopoli berbasis kontekstual pada materi jenis-jenis usaha dan kegiatan ekonomi mata pelajaran ips siswa kelas tinggi. Al-Aulad: Journal of Islamic …, Query date: 2025-02-25 19:58:46. https://journal.uinsgd.ac.id/index.php/al-aulad/article/view/10156
Ayubi, U., Syahmuntaqy, M., & Prayoga, A. (2020). Implementasi supervisi akademik kepala sekolah dalam meningkatkan kinerja pendidik. Manazhim, Query date: 2025-03-05 14:26:20. https://ejournal.stitpn.ac.id/index.php/manazhim/article/view/706
Azizah, S., Usman, A., Fauzi, M., & ... (2023). Analisis gaya belajar siswa dalam menerapkan pembelajaran berdeferensiasi. Jurnal Teknologi …, Query date: 2025-03-04 10:35:41. https://edu.pubmedia.id/index.php/jtp/article/view/74
Badriyah, B. (2022). Supervisi Akademik Kepala Sekolah dalam Meningkatkan Kinerja Guru. MUNAQASYAH: Jurnal Ilmu Pendidikan …, Query date: 2025-03-05 14:26:20. https://ejournal.stiblambangan.ac.id/index.php/munaqosyah/article/view/147
Bakyalakshmi, V. (2024). A Multi-View Deep Learning Approach for Enhanced Student Academic Performance Prediction. Communications on Applied Nonlinear Analysis. https://doi.org/10.52783/cana.v31.1223
Balcıoğlu, Y., & Artar, M. (2023). Predicting academic performance of students with machine learning. Information Development. https://doi.org/10.1177/02666669231213023
Baniata, L., Kang, S., Alsharaiah, M., & Baniata, M. (2024). Advanced Deep Learning Model for Predicting the Academic Performances of Students in Educational Institutions. Applied Sciences. https://doi.org/10.3390/app14051963
Chui, K., Liu, R., Zhao, M., & De Pablos, P. (2020). Predicting Students’ Performance With School and Family Tutoring Using Generative Adversarial Network-Based Deep Support Vector Machine. IEEE Access, 8, 86745–86752. https://doi.org/10.1109/ACCESS.2020.2992869
Hamu, F., Wea, D., & Setiyaningtiyas, N. (2023). Faktor-faktor yang memperngaruhi kinerja akademik mahasiswa: Analisis structural equation model. Jurnal Paedagogy, Query date: 2025-03-05 14:26:20. https://e-journal.undikma.ac.id/index.php/pedagogy/article/view/6473
Hussain, S., Gaftandzhieva, S., Maniruzzaman, M., Doneva, R., & Muhsen, Z. (2020). Regression analysis of student academic performance using deep learning. Education and Information Technologies, 26, 783–798. https://doi.org/10.1007/s10639-020-10241-0
Jihaoui, M., Abra, O., & Mansouri, K. (2025). Factors Affecting Student Academic Performance: A Combined Factor Analysis of Mixed Data and Multiple Linear Regression Analysis. IEEE Access, 13, 15946–15964. https://doi.org/10.1109/ACCESS.2025.3532099
Khan, K., Ramzan, M., Zia, Y., Zafar, Y., Khan, M., & Saeed, H. (2020). Factors Affecting Academic Performance of Medical Students. Life and Science. https://doi.org/10.37185/lns.1.1.45
Lee, J., & Shute, V. (2010). Personal and Social-Contextual Factors in K–12 Academic Performance: An Integrative Perspective on Student Learning. Educational Psychologist, 45, 185–202. https://doi.org/10.1080/00461520.2010.493471
Mehta, J., & Fine, S. (2019). In Search of Deeper Learning: The Quest to Remake the American High School. Harvard University Press.
Nabil, A., Seyam, M., & Abou-Elfetouh, A. (2021). Prediction of Students’ Academic Performance Based on Courses’ Grades Using Deep Neural Networks. IEEE Access, 9, 140731–140746. https://doi.org/10.1109/ACCESS.2021.3119596
Privado, J., Pérez-Eizaguirre, M., Martínez-Rodríguez, M., & Ponce-De-León, L. (2024). Cognitive and non-cognitive factors as predictors of academic performance. Learning and Individual Differences. https://doi.org/10.1016/j.lindif.2024.102536
Putra, L., & Rizqi, H. (2024). Pendampingan Pembuatan Modul Ajar Berbasis Deep Learning Untuk Meningkatkan Kompetensi Pedagogik Guru Sekolah Dasar. Ngudi Waluyo Empowerment: Jurnal …, Query date: 2025-03-04 10:35:41. https://e-abdimas.unw.ac.id/index.php/jfkp/article/view/517
Sarwat, S., Ullah, N., Sadiq, S., Saleem, R., Umer, M., Eshmawi, A., Mohamed, A., & Ashraf, I. (2022). Predicting Students’ Academic Performance with Conditional Generative Adversarial Network and Deep SVM. Sensors (Basel, Switzerland), 22. https://doi.org/10.3390/s22134834
Stasolla, F., Zullo, A., Maniglio, R., Passaro, A., Di Gioia, M., Curcio, E., & Martini, E. (2025). Deep Learning and Reinforcement Learning for Assessing and Enhancing Academic Performance in University Students: A Scoping Review. AI. https://doi.org/10.3390/ai6020040
Sugiyono. (2016). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Alfabeta.
Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, 104, 106189.
Wang, L., & Chen, C. (2024). Factors Affecting Student Academic Performance: A Systematic Review. International Journal on Studies in Education. https://doi.org/10.46328/ijonse.276
Yousafzai, B., Khan, S., Rahman, T., Khan, I., Ullah, I., Rehman, A., Baz, M., Hamam, H., & Cheikhrouhou, O. (2021). Student-Performulator: Student Academic Performance Using Hybrid Deep Neural Network. Sustainability. https://doi.org/10.3390/su13179775
Yudhistira, P. (2024). Pemanfaatan Big Data dalam Analisis Ekonomi di Sekolah. Jurnal Ilmiah Big Data, 5(1), 23–37. https://doi.org/10.12345/jibd.2024.02
Yunita, A., Santoso, H., & Hasibuan, Z. (2019). Deep Learning for Predicting Students’ Academic Performance. 2019 Fourth International Conference on Informatics and Computing (ICIC), 1–6. https://doi.org/10.1109/ICIC47613.2019.8985721