Vol. 2 No. 9 (2023): August
Open Access
Peer Reviewed

ANALISIS GAMBAR WAJAH PALSU: MENDETEKSI KEASLIAN GAMBAR YANG DIMANIPULASI MENGGUNAKAN METODE VARIATIONAL AUTOENCODER DAN FORENSICS DEEP NEURAL NETWORK

Authors

Regina Angelika Septi Rahayu , Handri Santoso

DOI:

10.54443/sibatik.v2i9.1312

Published:

2023-08-14

Downloads

Abstract

Artificial intelligence (AI) is one of the technologies commonly used for automated computer systems. Artificial intelligence is designed to solve cognitive problems. The convenience provided by AI is sometimes misused, resulting in negative impacts on many people. One negative impact of AI technology misuse is deepfake. Deepfake is a technology used for image or video manipulation. The manipulation techniques used in deepfake are employed to alter images, such as faces, places, objects or even voices. Variational autoencoder (VAE) is a deep learning algorithm that can be used for facial manipulation. The result of the VAE process is an image obtained from the merging of original facial images during the training process. The new facial images generated from VAE training are called decoder images or manipulations. Both original facial images and manipulation facial images will be analyzed using the forensics deep neural network method. The analysis technique involves the use of error level analysis (ELA), which helps identify significant changes that occur in the images. Based on the testing results using both original and manipulated facial images, the applied method demonstrates the ability to detect real and fake images.

Keywords:

Artificial Intelligence (AI) Deepfake Variational Autoencoder (VAE) Decoder Forensics Deep Neural Network Error Level Analysis (ELA)

References

Candra, P. N., & Prapanca, A. (2020). Klasifikasi Gambar Asli dan Manipulasi Menggunakan Error Level Analysis (ELA) Sebagai Proses Komputasi Metode Convolutional Neural Network (CNN). Journal of Informatics and Computer Science (JINACS), 2(01), 9–18. https://doi.org/10.26740/jinacs.v2n01.p9-18

Das, A., Viji, K. S. A., & Sebastian, L. (2022, July 29). A survey on deepfake video detection techniques using deep learning. 2022 Second International Conference on Next Generation Intelligent Systems (ICNGIS). http://dx.doi.org/10.1109/icngis54955.2022.10079802

Das, S., Seferbekov, S., Datta, A., Islam, Md. S., & Amin, Md. R. (2021, October). Towards Solving the DeepFake Problem : An Analysis on Improving DeepFake Detection using Dynamic Face Augmentation. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). http://dx.doi.org/10.1109/iccvw54120.2021.00421

Erhan, D., Szegedy, C., Toshev, A., & Anguelov, D. (2014, June). Scalable object detection using deep neural networks. 2014 IEEE Conference on Computer Vision and Pattern Recognition. http://dx.doi.org/10.1109/cvpr.2014.276

Foster, D. (2019). Generative deep learning: Teaching machines to paint, write, compose, and play. “O’Reilly Media, Inc.”

Keras: The high-level API for TensorFlow. (n.d.). TensorFlow. Retrieved June 25, 2023, from https://www.tensorflow.org/guide/keras

Kim, E., & Cho, S. (2021). Exposing fake faces through deep neural networks combining content and trace feature extractors. IEEE Access, 9, 123493–123503. https://doi.org/10.1109/access.2021.3110859

Li, J. (n.d.). CelebFaces attributes (celeba) dataset. Kaggle. Retrieved June 25, 2023, from https://www.kaggle.com/jessicali9530/celeba-dataset

Malik, A., Kuribayashi, M., Abdullahi, S. M., & Khan, A. N. (2022). DeepFake detection for human face images and videos: A survey. IEEE Access, 10, 18757–18775. https://doi.org/10.1109/access.2022.3151186

shaft49. (2020, September 9). real vs fake images (casia dataset). Kaggle. https://www.kaggle.com/code/shaft49/real-vs-fake-images-casia-dataset

Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., & Ortega-Garcia, J. (2020). Deepfakes and beyond: A Survey of face manipulation and fake detection. Information Fusion, 64, 131–148. https://doi.org/10.1016/j.inffus.2020.06.014

Yavuzkilic, S., Sengur, A., Akhtar, Z., & Siddique, K. (2021). Spotting deepfakes and face manipulations by fusing features from multi-stream cnns models. Symmetry, 13(8), 1352. https://doi.org/10.3390/sym13081352

Author Biographies

Regina Angelika Septi Rahayu, Universitas Pradita, Indonesia

Author Origin : Indonesia

Handri Santoso, Universitas Pradita, Indonesia

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Angelika Septi Rahayu, R. ., & Santoso, H. . (2023). ANALISIS GAMBAR WAJAH PALSU: MENDETEKSI KEASLIAN GAMBAR YANG DIMANIPULASI MENGGUNAKAN METODE VARIATIONAL AUTOENCODER DAN FORENSICS DEEP NEURAL NETWORK. SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan, 2(9), 2701–2726. https://doi.org/10.54443/sibatik.v2i9.1312

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.